gl/l (1097)
gl/l (1097)
آبکاری فلزات
نگاه کلی
فرایند آبکاری معمولا″ با فلزات گرانبها چون طلا و نقره و کروم جهت افزایش ارزش فلزات پایه مانند آهن و مس و غیره و همچنین ایجاد روکشی بسیار مناسب (در حدود میکرومتر) برای استفاده از خواص فلزات روکش کاربرد دارد. این خواص میتواند رسانایی الکتریکی و جلوگیری از خوردگی باشد. فعل و انفعال بین فلزها با واسطههای محیطی موجب تجزیه و پوسیدگی آنها میشود چون فلزها میل بازگشت به ترکیبات ثابت را دارند. پوسیدگی فلز ممکن است به صورت شیمیایی(توسط گازهای خشک و محلولهای روغنی گازوئیل و نفت و مانند اینها) و یا الکتروشیمیایی (توسط اسیدها و بازها و نمکها) انجام پذیرد. طبیعت و میزان خوردگی به ویژگیهای آن فلز٬ محیط و حرارت وابسته است. روشهای زیادی برای جلوگیری از خوردگی وجود دارد که یکی از آنها ایجاد روکشی مناسب برای فلزها میباشد و معمولترین روشهای روکش فلزها عبارتنداز: رنگین کردن فلزات ٬ لعابکاری ٬ آبکاری با روکش پلاستیک٬ حفاظت کاتدیک و آبکاری با فلزات دیگر.
اصول آبکاری
به طور کلی ترسیب فلز با استفاده از یک الکترولیت را میتوان به صورت واکنش زیر نشان داد:
فلز <——– (الکترون) z + کاتیون فلزی
ترسیب فلز با روشهای زیر انجام میشود:
آبکاری الکتریکی
در این روش ترسیب گالوانیک یک فلز بر پایه واکنشهای الکتروشیمیایی صورت میگیرد. هنگام الکترولیز در سطح محدود الکترود/الکترولیت در نتیجه واکنشهای الکتروشیمیایی الکترونها یا دریافت میشوند (احیا) و یا واگذار میشوند (اکسیداسیون). برای اینکه واکنشها در جهت واحد مورد نظر ادمه یابند لازم است به طور مداوم از منبع جریان خارجی استفاده شود. واکنشهای مشخص در آند و کاتد همچنین در الکترولیت همیشه به صورت همزمان صورت میگیرند. محلول الکترولیت باید شامل یونهای فلز رسوبکننده باشد و چون یونهای فلزها دارای بار مثبت می باشند به علت جذب بارهای مخالف تمایل به حرکت در جهت الکترود یا قطبی که دارای الکترون اضافی میباشد (قطب منفی یا کاتد) را دارند. قطب مخالف که کمبود الکترون دارد قطب مثبت یا آند نامیده میشود. به طور کلی سیکل معمول پوششدهی را میتوان به صورت زیر در نظر گرفت : : – یک اتم در آند یک یا چند الکترون از دست میدهد و در محلول پوششدهی به صورت یون مثبت در میآید. – یون مثبت به طرف کاتد یعنی محل تجمع الکترونها جذب شده و در جهت آن حرکت میکند . – این یون الکترونهای از دست داده را در کاتد به دست آورده و پس از تبدیل به اتم به صورت جزیی از فلز رسوب میکند.
قوانین فارادی
قوانین فارادی که اساس آبکاری الکتریکی فلزها را تشکیل میدهند نسبت بین انرژی الکتریکی و مقدار عناصر جا به جا شده در الکترودها را نشان میدهند.
قانون اول: مقدار موادی که بر روی یک الکترود ترسیب میشود مستقیما″ با مقدار الکتریسیتهای که از الکترولیت عبور میکند متناسب است.
قانون دوم :مقدار مواد ترسیب شده با استفاده از الکترولیتهای مختلف توسط مقدار الکتریسیته یکسان به صورت جرمهایی با اکیوالان مساوی از آنهاست.
بر اساس این قوانین مشخص شده است که 96500 کولن الکتریسیته (یک کولن برابر است با جریان یک آمپر در یک ثانیه) لازم است تا یک اکیوالان گرم از یک عنصر را رسوب دهد یا حل کند.
آبکاری بدون استفاده از منبع جریان خارجی
هنگام ترسیب فلز بدون استفاده از منبع جریان خارجی الکترونهای لازم برای احیای یونهای فلزی توسط واکنشهای الکتروشیمیایی تامین میشوند. بر این اساس سه امکان وجود دارد:
ترسیب فلز به روش تبادل بار (تغییر مکان) یا فرایند غوطهوری: اساس کلی این روش بر اصول جدول پتانسیل فلزها پایهریزی شده است. فلزی که باید پوشیده شود باید پتانسیل آن بسیار ضعیفتر (فلز فعال) از پتانسیل فلز پوشنده (فلز نجیب) باشد. و فلزی که باید ترسیب شود باید در محلول به حالت یونی وجود داشته باشد. برای مثال به هنگام غوطهور نمودن یک میله آهنی در یک محلول سولفات مس فلز آهن فعال است و الکترون واگذار میکند و به شکل یون آهن وارد محلول میشود. دو الکترون روی میله آهن باقی میماند. یون مس دو الکترون را دریافت کرده احیا میشود و بین ترتیب مس روی میله آهن میچسبد. و هنگامی که فلز پایه که باید پوشیده شود (مثلا آهن) کاملا″ توسط فلز پوشنده (مثلا مس) پوشیده شود آهن دیگر نمیتواند وارد محلول شود و الکترون تشکیل نمیشود و در نتیجه عمل ترسیب خاتمه مییابد. موارد استعمال این روش در صنعت آبکاری عبارت است از: مساندود نمودن فولاد٬ نقرهکاری مس و برنج٬ جیوهکاری٬ حمام زنکات٬ روشهای مختلف کنترل و یا آزمایش٬ جمعآوری فلز از حمامهای فلزات قیمتی غیر قابل استفاده (طلا) با استفاده از پودر روی.
ترسیب فلز به روش اتصال: این روش عبارت است از ارتباط دادن فلز پایه با یک فلز اتصال. جسم اتصال نقش واگذارکننده الکترون را ایفا میکند. برای مثال هنگامی که یک میله آهنی (فلز پایه) همراه یک میله آلومینیومی٬ به عنوان جسم اتصال در داخل یک محلول سولفات مس فرو برده میشود٬ دو فلز آهن و آلومینیوم به جهت فعالتر بودن از مس٬ به صورت یون فلزی وارد محلول میشوند و روی آنها الکترون باقی میماند و چون فشار انحلال آلومینیوم از آهن بیشتر است از این رو اختلاف پتانسیلی بین دو فلز ایجاد شده و الکترونها در روی یک سیم رابط٬ از سوی آلومینیوم به طرف آهن جاری میشوند. بنابراین مشاهده میشود که مقدار زیادی از یونهای مس محلول روی آهن ترسیب میشوند. ضخامت قشر ایجاد شده نسبت به روش ساده تبادل بار بسیار ضخیمتر است. از روش اتصال برای پوششکاری فلزات پیچیده استفاده میشود.
روش احیا: ترسیب فلز با استفاده از محلولهای حاوی مواد احیا کننده٬ روش احیا نامیده میشود. یعنی دراین روش الکترونهای لازم برای احیای یونهای فلزات توسط یک احیا کننده فراهم میشود. پتانسیل احیا کنندهها باید از فلز پوشنده فعالتر باشند٬ اما بابد خاطر نشان ساخت که اختلاف پتانسیل به دلایل منحصرا″ کاربردی روکشها٬ نباید بسیار زیاد باشد. برای مثال هیپوفسفیت سدیم یک احیا کننده برای ترسیب نیکل است ولی برای ترسیب مس که نجیبتر است٬ مناسب نیست. مزیت استفاده از این روش در این است که میتوان لایههایی با ضخامت دلخواه ایجاد نمود. زیرا اگر مقدار ماده احیا کننده در الکترولیت ثابت نگه داشته شود میتوان واکنش ترسیب را کنترل نمود. به ویژه غیر هادیها را نیز بعد از فعال نمودن آنها٬ میتوان پوششکاری کرد.
آماده سازی قطعات برای آبکاری
برای بدست آوردن یک سطح فلزی مناسب نخستین عملی است که با دقت باید صورت گیرد٬ زیرا چسبندگی خوب زمانی به وجود میآید که فلز پایه٬ سطحی کاملا تمیز و مناسب داشته باشد. بدین علت تمام لایهها و یا قشرهای مزاحم دیگر از جمله کثافات٬ لکههای روغنی٬ لایههای اکسید٬ رسوبات کالامین که روی آهن در درجههای بالا ایجاد میشوند را از بین برد. عملیات آماده سازی عبارتند از:
سمبادهکاری و صیقلکاری: طی آن سطوح ناصاف را به سطوح صاف و یکنواخت تبدیل میکنند.
چربیزدایی: طی آن چربیهای روی سطح فلزات را میتوان توسط عمل انحلال٬ پراکندگی٬ امولسیون٬ صابونی کردن و یا به روش تبادل بار از بین برد.
پرداخت: انحلال شیمیایی قشرهای حاصل از خوردگی روی سطح فلزات را پرداخت کردن مینامند که اساسا″ به کمک اسیدهای رقیق و در بعضی موارد توسط بازها انجام میگیرد.
آبکشی٬ خنثیسازی٬ آبکشی اسیدی٬ خشک کردن: خنثیسازی برای از بین بردن مقدار کم اسید یا مواد قلیایی که در خلل و فرج قطعه باقی میمانندو همچنین آبکشی اسیدی برای جلوگیری از امکان تشکیل قشر اکسید نازک غیر قابل رؤیت که موجب عدم چسبندگی لایه الکترولیتی میشود.
موقعیت های استفاده از نانوتکنولوژی صنایع آبکاری
در سالهای اخیر نانوتکنولوژی که همان علم و تکنولوژی کنترل و بکارگیری ماده در مقیاس نانومتر است٬ تحقیقات فزاینده و موقعیتهای تجاری زیادی را در زمینههای مختلف ایجاد نموده است. یک جنبه خاص از نانوتکنولوژی به مواد دارای ساختار نانویی یعنی موادی با بلورهای بسیار ریز که اندازه آنها معمولا کمتر از 100 میکرومتر است میپردازد٬ که این مواد برای اولین بار حدود دو دهه قبل به عنوان فصل مشترکی معرفی شدند. این مواد نانوساختاری با سنتز الکتروشیمیایی تولید شدهاند که دارای خواصی از قبیل٬ استحکام٬ نرمی و سختی٬ مقاومت به سایش٬ ضریب اصطکاک٬ مقاومت الکتریکی٬ قابلیت انحلال هیدروژن و نفوذپذیری٬ مقاومت به خوردگی موضعی و ترک ناشی از خوردگی تنشی و پایداری دمایی را دارا هستند. دریچههای آبکاری الکتریکی برای سنتز این ساختارها با استفاده از تجهیزات و مواد شیمیایی مرسوم برای طیف گسترهای از فلزات خالص و آلیاژها گشوده شده است. یک روش مقرون به صرفه برای تولید محصولاتی با اشکال بسیار متفاوت از پوششهای نازک و ضخیم٬ فویلها و صفحهها با اشکال غیر ثابت تا اشکال پیچیده شکلیافته با روشهای الکتریکی است. از این رو فرصتهای قابل توجهی برای صنعت آبکاری وجود دارد تا نقش تعیینکنندهای را در گسترش کاربردهای جدید نانوتکنولوژی ایفا نماید که این امر به آسانی با تکیه بر اصول قابل پیشبینی متالوژیکی که در سالیان گذشته مشخص شده قابل تحقق است
آبکاری با نیکل
نیکل یکی از مهمترین فلزاتی است که در آبکاری به کار گرفته میشود. تاریخچه آبکاری نیکل به بیش از صدها سال پیش باز میگردد این کار در سال 1843 هنگامی که R.Rotlger توانست رسوبات نیکل را از حمامی شامل سولفات نیکل و آمونیوم بدست آورد آغاز گردید بعد از آن Adams اولین کسی بود که توانست آبکاری نیکل را در موارد تجاری انجام دهد. نیکل رنگی سفید شبیه نقره دارد که کمی متمایل به زرد است و به راحتی صیقلپذیر و دارای خاصیت انبساط و انقباض٬ جوشپذیر بوده و مغناطیسی میبلاشد. آبکاری با نیکل اساسا به منظور ایجاد یک لایه براق برای یک لایه بعدی مانند کروم و به منظور فراهم آوردن جلای سطحی خوب و مقاومت در برابر خوردگی برای قطعات فولادی٬ برنجی و حتی بر روی پلاستیکهایی که با روشهای شیمیایی متالیزه شدهاند به کار میرود. مواد شیمیایی که در الکترولیتهای نیکل به کار میروند عبارتنداز:
نمک فلزی (مهمترین آنها سولفات نیکل است و همچنین از کلرید نیکل و سولفومات نیکل نیز استفاده میشود.)
نمک رسانا (برای بالا بودن قابلیت رسانایی ترجیحا از کلریدها مخصوصا کلرید نیکل استفاده میشود.)
مواد تامپونه کننده (برای ثابت نگه داشتن PH اصولا اسید بوریک به کار برده میشود.)
مواد ضد حفرهای شدن (برای جلوگیری از حفره ای شدن به الکترولیتهای نیکل موادی اضافه می کنند که مواد ترکننده نامیده می شوند. سابقا از مواد اکسید کننده به عنوان مواد ضد حفره استفاده میشد.)
آبکاری با کروم
روکشهای لایه کروم رنگی شبیه نقره٬ سفید مایل به آبی دارند. قدرت انعکاس سطح کرومکاری شده و کاملا″ صیقلی شده در حد 65% است (برای نقره 88%و نیکل 55%) در حالی که خاصیت انعکاس نقره و نیکل با گذشت زمان ضایع میشود٬ در مورد کروم تغییری حاصل نمیشود. لایههای کروم قابل جوشکاری نبوده و رنگکاری و نقاشی را نمیپذیرند. کروم در مقابل گازها٬ موادقلیایی و نمکها مقاوم است اما اسید سولفوریک واسید کلریدریک وسایر اسیدهای هالوژندار در تمام غلظتها ودر تمام درجه حرارتها بر روی کروم تاثیر می گذارند. به دنبال رویین شدن شیمیایی٬ روکشهای کروم مقاومت خوبی در اتمسفر از خود نشان میدهند و کدر نمیشوند. از این رو به تمیز کردن و یا نو نمودن توسط محلولها یا محصولات حل کننده اکسیدها را ندارند. روکشهای کروم تا 500 درجه سانتیگراد هیچ تغییری از نظر کدر شدن متحمل نمیشوند. رویین شدن حالتی است که در طی آن در سطح کروم٬ اکسید کروم (3+) تشکیل می شود. این عمل موجب جابهجایی پتانسیل کروم از 0.717 به 1.36 ولت می شود و کروم مثل یک فلز نجیب عمل می نماید. لایه های پوششی کروم براق با ضخامت پایین (در حدود 1 میکرومتر)که غالبا در کرومکاری تزیینی با آن روبه رو هستیم فولاد را در مقابل خوردگی حفاظت نمیکنند کروم کاری ضخیم که در مقابل خوردگی ضمانت کافی داشته باشد فقط از طریق کرومکاری سخت امکانپذیر است. با توجه به اینکه پوششهای کروم الکترولیتی سطح مورد آبکاری را به طور کامل نمیپوشانند از این رو کرومکاری تزیینی هرگز به تنهایی مورد استفاده قرار نمیگیرد بلکه همواره آن را به عنوان پوشش نهایی بر روی واکنشهایی که حفاظت سطح را در مقابل خوردگی ضمانت مینمایند به کار میروند. معمولا به عنوان پایه محافظ از نیکل استفاده میشود.
آبکاری با مس
مس فلزی است با قابلیت کشش بدون پاره شدن٬ نرم و هادی بسیار خوب جریان برق و گرما. مس از هیدروژن نجیبتر است و در نتیجه نه تنها در مقابل آب و محلولهای نمکدار بلکه در مقابل اسیدهایی که اکسیدکننده نیستند نیز مقاومت دارد. اکسیدکنندهها و اکسیژن هوا به راحتی مس را به اکسید مس (I) و یا اکسید مس (II) تبدیل میکنند اکسیدهایی که برخلاف خود فلز در اکثر اسیدها حل میشوند. به دلیل وجود گازهای مخرب در محیط که دارای گوگرد هستند٬ روی اشیایی که از جنس مس هستند لایه هایی از سولفور مس به رنگهای تاریک و یا سبز تشکیل میشود.
الکترولیتهای آبکاری مس
الکترولیتهایی برپایه اسید سولفوریک یا اسید فلوریدریک
الکترولیتهایی که فسفات در بر دارند
الکترولیتها ی سیانیدی
الکترولیتهای اسیدی بر پایه سولفات مس به غیر از مساندود نمودن مستقیم سرب٬ مس و نیکل برای دیگر فلزات مناسب نیستند. اینها روی آهن٬ آلومینیم و روی به طور مستقیم تولید روکش نمیکنند اگر در یک الکترولیت اسید اشیایی از جنس آهن٬ آلومینیم و روی فرو ببریم یک لایه اسفنجی در نتیجه مبادله یونی ایجاد میشود. این یک لایه پایداری بدون چسبندگی برای لایههای دیگر خواهد بود. بنابراین قبل از مساندود نمودن این فلزات در محیط اسیدی باید حتما یک عملیات مساندود نمودن در محیط اسیدی انجام گرفته باشد. الکترولیتهای سیانیدی٬ علیرغم سمی بودنشان به علت دارا بودن خواص خوب اهمیت زیادی پیدا کردهاند. پوششهای حاصل از حمامهای سیانیدی دارای توان پوششی خوبی میباشند٬ آنها دارای دانهبندی حاصل از چسبندگی فوقالعادهایاند. در نتیجه پدیدههای شدید پلاریزاسیون٬ قدرت نفوذ الکترولیتهای سیانیدی بهتر از حمام های مسکاری اسید است. الکترولیتهای پیروفسفات مس برای ایجاد روکشهای زینتی روی زاماک٬ فولاد٬ آلیاژهای آلومینیم و برای پوشش سطحی فولاد بعد از عملیات سمانتاسیون به کار برده میشود. موارد کابردی دیگر میتوان مسکاری سیمها و شکلیابی با برق را نام برد.
آلیاژهای مس
برنج: آْلیاژی از مس و روی که CuZn30 نامیده میشود.
برنز: آلیاژی از مس و قلع میباشد.
آبکاری با روی
روی فلزی است به رنگ سفید متمایل به آبی٬ بالاتراز 100 درجه سانتیگراد شکننده٬ مابین100 الی 200 درجه سانتیگراد نرم٬ قابل انحنا و انبساط است و میتوان به صورت ورقههای نازک درآورد٬ بالای 200 درجه سانتیگراد دوباره شکننده میشود. خاصیت تکنیکی خیلی مهم روی حفاظت خیلی خوب پوششهای آن در مقابل خوردگی است. این خاصیت ترجیحا بواسطه تشکیل لایه یکنواخت و چسبنده اتمسفر ایجاد میشود و عموما شامل اکسید و هیدروکسید کربنات روی و گاهی نیز سولفات و کلرید روی میباشد.
الکترولیتهای آبکاری روی
الکترولیتهای اسیدی : اسید سولفوریک – اسید کلیدریک و اسید فلوبوریک.
الکترولیتهای بازی : سیانیدی – زنکاتی و پیروفسفات.
قدیمیترین نوع رویکاری گالوانیزاسیون است . در این روش روی کاری٬ قطعات آهنی بعد از عملیات پرداخت در داخل روی مذاب در درجه حرارتی مابین 420 الی 450 درجه سانتیگراد فرو برده میشود. برای اهداف تزئینی از رویکاری براق استفاده میشود. اساسا″ ترکیب حمامهای براق شبیه حمامهای مات است٬ فقط حمام های براق دارای درجه خلوص بالاتر و بعلاوه مواد براقکننده آلی و غیرآلی میباشند. معمولا لایههای پوششی روی عملیات پسین شیمیایی توسط کروماته کردن و یا فسفاته کردن را پذیرا هستند. در نتیجه کروماته کردن لایه های روی خوردگی روی به طور قابل ملاحظهای کاهش مییابد.
آبکاری با کادمیوم
رنگ آن سفید بوده و به نقره شباهت دارد. بسیاری از خواص کادمیوم به روی شبیه اند. لایه کادمیوم به سهولت قابل لحیمکاری است. حفاظت ضدخوردگی کادمیوم شدیدا″ تحت تاثیر محیط خورنده میباشد. با توجه به اینکه فلز کادمیوم مسموم کننده است٬ بدین جهت از این لایه ها نباید برای قطعاتی که همیشه دم دست هستند و همچنین در صنایع غذایی استفاده نمود.
الکترولیتهای آبکاری کادمیوم
حمام های کادمیوم کاری بسیار متداول از انحلال اکسید کادمیوم و یا سیانید کادمیوم در سیانید سدیم تولید میشوند . به وجود آمدن شکنندگی توسط هیدروژن در کادمیوم کاری سیانیدی سبب شده است که الکترولیتهای اسیدی برای کاربردهای ویژهای تهیه شوند. تنها فرایندی که امروزه سودمند است٬ بر پایه حمامهای فلوئوبرات مبتنی است . عملیات پسین پوششهای کادمیوم نیز به منظور بهتر نمودن منظر قطعه انجام مییابد. غوطهور نمودن کوتاه مدت در اسید نیتریک 0.5-0.3 درصد سبب براق شدن لایهها از نوع نقره خواهد شد. در صورتی که بخواهیم لایه کادمیوم در مقابل خوردگی مقاومتر شود٬ به طریق پسین با استفاده از محلولهای اسید حاوی یونهای کروم (VI) ممکن خواهد بود. بر طبق غلظت و ترکیب محلولهای کرومدار٬ لایههای کرومات به رنگهای آبی آسمانی٬ زرد براق یا سبز زیتونی ایجاد میشود که به طور قابل ملاحظهای در مقابل خوردگی لایه را بهتر مینمایند.
آبکاری با قلع
قلع فلزی است براق٬ دارای رنگ سفید نقرهای٬ در درجه حرارت معمولی در مقابل آب و هوا مقاوم است و اسیدها و بازهای ضعیف به سختی روی آن اثر میگذارند. برعکس اسید و بازهای قوی به آسانی روی آن اثر میگذارند. به راحتی لحیمپذیر است. قلع در مقابل مواد غذایی و اتمسفر معمولی تحت تاثیر قرار نمیگیرد. با توجه به اینکه سمی نیست٬ کاربرد زیادی در پوششکاری قطعات صنعتی مواد غذایی و صنعت کنسروسازی دارد. با توجه به لحیمکاری بسیار عالی در صنعت برق نیز به کار برده میشود.
الکترولیتهای آبکاری قلع
الکترولیتهای اسیدی : اسید فنل سولفونیک – اسید هیدروفلوریک و اسید فلوئوروبونیک.
الکترولیتهای قلیایی : براساس استانات سدیم یا پتاسیم و هیدروکسیدهای مربرطه میباشد.
پوششهای قلع ایجاد شده روی قطعات به طریق الکترولیتی ظاهری کدر دارند با فرو بردن قطعات در حمام روغن داغ (Surfuion) براق میشوند. حمامهای روغن داغ٬ خلل و فرج موجود در پوشش را از بین برده٬ مقاومت در مقابل خوردگی قشر را افزایش میدهند. همچنین با استفاده از یک محلول خیلی داغ کرومات قلیایی حاوی یک تر کننده٬ میتوان مقاومت در مقابل خوردگی قشر قلعاندود شده را بهتر نمود.
آبکاری با نقره
نقره فلزی قیمتی (نجیب)٬ به رنگ سفید براق است. اسید کلریدریک٬ اسید سولفوریک و اسید استیک به طور جزیی بر آن اثر میکند٬ برعکس اسید نیتریک٬ آن را به صورت نیترات نقره حل میکند. نقره توسط سولفور هیدروژن و ترکیبات دیگر گوگرد تولید سولفور نقره به رنگ سیاه مینماید. اکسیژن هوا به نقره آسیبی نمیرساند.همچنین در مقابل اغلب محلولهای نمکی و غذایی نیز مقاومت دارد.
الکترولیتهای آبکاری نقره
حمامهای نقره کاری شامل سیانید ساده نقره٬ کربنات پتاسیم٬ سیانید پتاسیم یا سیانید سدیم می باشد. هنگامی که از سیانید پتاسیم استفاده میشود پوشش به سختی می سوزد. ضمنا لایهها براق و حمامها دارای خاصیت هدایت جریان بیشتری هستند. سیانید قلیایی موجود در الکترولیت تحت تاثیر CO2 موجود در اتمسفر به طور جزیی تجزیه شده و تولید کربنات میکند. کربنات تولید شده خاصیت هدایت الکتریسیته و قدرت نفوذ الکترولیت را زیاد میکند. پوششهای نقره که در حمامهای سیانیدی ساده ایجاد میشود کدر هستندو باید در هنگام پوششکاری برشکاری نمود. عملیات اجتنابناپذیر جلاکاری علاوه بر اینکه قیمت را بالا میبرد٬ سبب از بین رفتن فلز نقره نیز میشوند. در حال حاضر حمامهای نقره حاوی مواد افزودنی مختلف سبب ایجاد لایههای براق به کار برده میشوند. این حمامها معایب الکترولیتهای ساده را ندارند.
آبکاری با طلا
طلا فلزی است قیمتی (نجیب)٬ به رنگ زرد٬ در طبیعت به صورت خالص پیدا میشود. طلا در مقابل اتمسفر٬ آب٬ محلولهای نمکی و اسیدها آسیب ناپذیر است. تنها تیزاب (یک حجم نیتریک و سه حجم اسید کلریدریک) یا اسید کلریدریک با داشتن اکسیدکنندهها طلا را حل میکند. برای بهتر نمودن خواص پوشش طلای ترسیب شده به طریق الکتروشیمیایی٬ به الکترولیتهای طلا مواد شیمیایی کاملا مشخص افزوده میشود. پوششهای آلیاژی نقش مهمی در روکش طلای الکترولیتی دارند. همچنین میتوان به طور مناسبی خواص ویژه روکشها٬ مانند سختی٬ براق نمودن و رنگ را تحت تاثیر قرار داد. طلاکاری با ضخامت کم (آبنوسکاری الکتریکی طلا) درزرگری به کار میرود. ایجاد لایههایی با ضخامت نسبتا نازک به ضخامت در حدود 0.01 الی 0.1 میکرومتر فلز پایه را در مقابل کدر شدن مقاوم میکند. به علاوه رفته رفته لایههای ضخیم به ویژه در قطعات صنعتی به کار میبرند٬ به عنوان مثال در صنعت الکترونیک برای ارتباطات در مدارهای چاپی٬ در صنایع فضایی٬ در ساختن وسایل سفره (کارد٬ قاشق و چنگال) و در صنعت شیمیایی به عنوان ضدخوردگی.
آبکاری با فلزات گروه پلاتین
به طو کلی پلاتین٬ پالادیوم٬ رودیوم٬ روتنیوم٬ اسمیوم و اریدیوم را فلزات گروه پلاتین مینامند. فلزات گروه پلاتین در صنعت مدرن رفته رفته اهمیت پیدا میکنند و از آنجایی که گرانبها هستند سعی می شود به جای استفاده از فلزات گروه پلاتین در صنعت پوشش کاری٬ از فلزات دیگر استفاده شود. از فلزات گروه پلاتین در صنعت تجهیزات آزمایشگاهی پیشرفته و مدرن٬ در صنعت الکتروتکنیک٬ در زرگری و در صنعت شیمیایی به عنوان کاتالیزور استفاده میکنند.
آبکاری اجسام غیر هادی
پوششکاری مواد غیر هادی (مثلا : شیشه٬ موادمعدنی٬ نیمههادیها٬ سرامیک٬ چرم٬ برگ درختان٬ چوب٬ پارچه و مواد پلاستیکی) به روش گالوانیک (الکترولیتی با استفاده از منبع جریان خارجی)٬ در صورتی که سطح آنها قبلا توسط یک روکش هادی جریان پوشیده شده باشد٬ ممکن خواهد شد. مشکلات فلز اندود نمودن غیر هادیها٬ در ترسیب الکترولیتی نیست٬ بلکه در چسبندگی روکش فلزی است. غیرهادی ها بعد از یک آمادهسازی کامل٬ آماده فلزاندود کردن هستند که بر روی آنها بتوان یک پوشش فلز با چسبندگی خوب افزود. در نتیجه فلزاندود نمودن مواد پلاستیکی٬ خواص جالب پلاستیک (برای مثال٬ وزن سبک٬ تغییر شکل آسان با کیفیت سطح استثنایی٬ ارزان قیمت بودن نسبت به فلز) با خواص روکشهای فلزی حاصله از آبکاری با برق به دست میآید.
پوششهای رنگها و جلاها
سادهترین راه مبارزه با خوردگی ، اعمال یک لایه رنگ است. با استفاده از رنگها بصورت آستر و رویه ، میتوان ارتباط فلزات را با محیط تا اندازهای قطع کرد و در نتیجه موجب محافظت تاسیسات فلزی شد. به روشهای سادهای میتوان رنگها را بروی فلزات ثابت کرد که میتوان روش پاششی را نام برد. به کمک روشهای رنگدهی ، میتوان ضخامت معینی از رنگها را روی تاسیسات فلزی قرار داد.آخرین پدیده در صنایع رنگ سازی ساخت رنگهای الکتروستاتیک است که به میدان الکتریکی پاسخ میدهند و به این ترتیب میتوان از پراکندگی و تلف شدن رنگ جلوگیری کرد.
پوششهای فسفاتی و کروماتی
این پوششها که پوششهای تبدیلی نامیده میشوند، پوششهایی هستند که از خود فلز ایجاد میشوند. فسفاتها و کروماتها نامحلولاند. با استفاده از محلولهای معینی مثل اسید سولفوریک با مقدار معینی از نمکهای فسفات ، قسمت سطحی قطعات فلزی را تبدیل به فسفات یا کرومات آن فلز میکنند و در نتیجه ، به سطح قطعه فلز چسبیده و بعنوان پوششهای محافظ در محیطهای خنثی میتوانند کارایی داشته باشند.این پوششها بیشتر به این دلیل فراهم میشوند که از روی آنها بتوان پوششهای رنگ را بر روی قطعات فلزی بکار برد. پس پوششهای فسفاتی ، کروماتی ، بعنوان آستر نیز در قطعات صنعتی میتوانند عمل کنند؛ چرا که وجود این پوشش ، ارتباط رنگ با قطعه را محکمتر میسازد. رنگ کم و بیش دارای تحلخل است و اگر خوب فراهم نشود، نمیتواند از خوردگی جلوگیری کند.
پوششهای اکسید فلزات
اکسید برخی فلزات بر روی خود فلزات ، از خوردگی جلوگیری میکند. بعنوان مثال ، میتوان تحت عوامل کنترل شده ، لایهای از اکسید آلومینیوم بر روی آلومینیوم نشاند. اکسید آلومینیوم رنگ خوبی دارد و اکسید آن به سطح فلز میچسبد و باعث میشود که اتمسفر به آن اثر نکرده و مقاومت خوبی در مقابل خوردگی داشته باشد. همچنین اکسید آلومینیوم رنگپذیر است و میتوان با الکترولیز و غوطهوری ، آن را رنگ کرد. اکسید آلومینیوم دارای تخلخل و حفرههای شش وجهی است که با الکترولیز ، رنگ در این حفرهها قرار میگیرد.همچنین با پدیده الکترولیز ، آهن را به اکسید آهن سیاه رنگ (البته بصورت کنترل شده) تبدیل میکنند که مقاوم در برابر خوردگی است که به آن "سیاهکاری آهن یا فولاد" میگویند که در قطعات یدکی ماشین دیده میشود.
پوششهای گالوانیزه
گالوانیزه کردن (Galvanizing) ، پوشش دادن آهن و فولاد با روی است. گالوانیزه ، بطرق مختلف انجام میگیرد که یکی از این طرق ، آبکاری با برق است. در آبکاری با برق ، قطعهای که میخواهیم گالوانیزه کنیم، کاتد الکترولیز را تشکیل میدهد و فلز روی در آند قرار میگیرد. یکی دیگر از روشهای گالوانیزه ، استفاده از فلز مذاب یا روی مذاب است. روی دارای نقطه ذوب پایینی است.در گالوانیزه با روی مذاب آن را بصورت مذاب در حمام مورد استفاده قرار میدهند و با استفاده از غوطهور سازی فلز در روی مذاب ، لایهای از روی در سطح فلز تشکیل میشود که به این پدیده ، غوطهوری داغ (Hot dip galvanizing) میگویند. لولههای گالوانیزه در ساخت قطعات مختلف ، در لوله کشی منازل و آبرسانی و … مورد استفاده قرار میگیرند.
پوششهای قلع
قلع از فلزاتی است که ذاتا براحتی اکسید میشود و از طریق ایجاد اکسید در مقابل اتمسفر مقاوم میشود و در محیطهای بسیار خورنده مثل اسیدها و نمکها و … بخوبی پایداری میکند. به همین دلیل در موارد حساس که خوردگی قابل کنترل نیست، از قطعات قلع یا پوششهای قلع استفاده میشود. مصرف زیاد این نوع پوششها ، در صنعت کنسروسازی میباشد که بر روی ظروف آهنی این پوششها را قرار میدهند.
پوششهای کادمیم
این پوششها بر روی فولاد از طریق آبگیری انجام میگیرد. معمولا پیچ و مهرههای فولادی با این فلز ، روکش داده میشوند.
ماهیت آهن گالوانیزه
در آهن گالوانیزه ، بین آهن و روی ، پیلی الکتروشیمیایی تشکیل میشود که در آن روی به جای آهن به عنوان آند بکار میرود و آهن به عنوان کاتد. روی در آند اکسید میشود چون فلزی پستتر یا فعالتر از آهن است و دارای پتانسیل احیاء کمتری از آهن است و پتانسیل اکسید بیشتری از آن دارد.
حلبی
در حلبی هایی که از آن ، قوطی میسازند، عمل معکوسی انجام میشود. در حلبی ، بر روی آهن ، پوشش قلع بکار رفته است و عمل معکوس آهن گالوانیزه انجام میشود. چون آهن فلزی فعالتر از قلع است و پتانسیل احیاء قلع بیشتر از آهن است و به عنوان کاتد در حلبی به کار میرود و آهن آند میشود. البته در صورتی که پوشش قلع بشکند، خوردگی آهن در زیر این پوشش پیش میرود.
علت استفاده از آهن گالوانیزه
علت استفاده و ایجاد آهنهای گالوانیزه ، پدیده خوردگی آهن است. خوردگی آهن زیانهای اقتصادی فاحشی دارد. هزینه سالانه تعویض آهن آلات زنگ زده در جهان مقادیر زیادی را بخود اختصاص میدهد. فرآیند زنگ زدن آهن ماهیت الکتروشیمیایی دارد.خوردگی یا زنگ زدن آهن فقط در حضور اکسیژن و آب صورت میگیرد. در جایی بر سطح جسم آهنی، اکسایش آهن انجام میشود و آند را تشکیل میدهد و در جایی دیگر سطح آن جسم که (O2(g و H2O وجود دارد، کاهش انجام میشود و کاتد را تشکیل میدهد و در نتیجه این عمل، ایجاد یک سلول ولتایی یا پیل ولتایی یا الکتروشیمیایی بسیار کوچک است. الکترونهای تولید شده در ناحیه آندی در میان آهن بسوی ناحیه کاتدی حرکت میکند.کاتیونها ، یعنی یونهای Fe+2 که در آن آند تولید شدهاند در آب موجود بر سطح جسم بسوی کاتد میروند. آنیونها یعنی یونهای -OH که در کاتد تولید شدهاند، به طرف آند حرکت میکنند. این یونها در جایی میان دو ناحیه بهم میرسند و Fe(OH)2 بوجود میآورند.اما "آهن II هیدروکسید" در حضور رطوبت و اکسیژن پایدار نیست. این هیدروکسید به نوبه خود اکسید و به "آهن III هیدروکسید" تبدیل میشود که در واقع "آهن III اکسید آبپوشیده" ، Fe2O3.xH2O یا زنگ آهن است.جاهایی که جسم آهنی زنگ زده گود شده است ، نواحی آندی یا جاهایی هستند که آهن بصورت یونهای Fe+2 در محلول وارد میشوند. نواحی کاتدی جاهایی هستند که بیشتر در معرض رطوبت و هوا هستند ، زیرا (O2(g و H2O در واکنش کاتدی دخالت دارند. زنگ آهن همیشه در نقاطی نسبتا دورتر از جاهای گود شده (میان نواحی آندی و کاتدی) ایجاد میشود.
اثر آب نمک
آب نمک ، زنگ زدن را تسریع میکند، زیرا یونهای موجود در آب به انتقال جریان در سلولهای ولتایی یا پیلهای ولتایی کوچکی که بر سطح آهن برقرار شدهاست، کمک میکند. بنظر میرسد که بعضی از یونها ، مثلا -Cl وکنشهای الکترودی را کاتالیز میکنند.
اثر ناخالصیها
ناخالصیهای موجود در آهن نیز سبب پیشرفت زنگ زدگی میشوند، آهن بسیار خالص به سرعت زنگ نمیزند. بعضی از انواع ناخالصیها، کشیدگی ها و نقصهای بلوری موجود در آهن با جذب الکترونها آنها را از ناحیههایی که جایگاههای آندی میشوند، دور میکنند.
طریقه گالوانیزاسیون
در گالوانیزاسیون ، فلز فاسد شدنی را در مذاب یک فلز فاسد ناشدنی فرو میبرند و بیرون میآورند تا سطح آن از یک لایه فلز فاسد نشدنی پوشیده شود. مثلا ورقه های نازک آهنی را در مذاب فلز روی فرو میبرند و بیرون میآورند تا سطح آنها از فلز روی پوشیده شود و آهن سفید یا آهن گالوانیزه تهیه شود.

- ۹۶/۰۷/۱۶